
www.embedded-world.eu

Deal with Component Shortages Using Abstraction

Based Connectivity Solutions

Trish Messiter; Gokhan Tanyeri

Clarinox Technologies Pty Ltd

Melbourne, Australia

firstname@clarinox.com

Abstract—Supply chain disruptions caused by the pandemic

have had major repercussions on the embedded systems

industry. Firms have been forced to switch from one supplier to

another in an attempt to fulfill their customers’ orders, and

engineering teams have been faced with an enormous amount of

rework. This has not only required hardware redesign but has

also necessitated software changes. Abstracting the connectivity

components of a design from the hardware and Real Time

Operating System (RTOS) layer is one method to relieve part of

the rework burden. This presentation will discuss abstraction

based connectivity solutions to enable the same software

libraries and application layers to run across dozens of different

target platforms. This approach both assists in coping with

current component shortages, and provides increased flexibility

for the future. Abstraction based connectivity addresses many

issues related to component shortages. Can’t get one

microcontroller unit (MCU)? Switch to another without needing

to rewrite all your software. Want another member of your

product family at a different price-point? Design the new

hardware with the confidence that portions of your current

software can still be reused. Abstraction based solutions can

enable companies to move forward with their designs in a timely

and cost-effective way, despite the uncertainty of the current

environment.

Keywords—connectivity; Bluetooth; Wi-Fi; software

architecture; abstraction

I. INTRODUCTION

There is no doubt that over the last two and a half years,
the pandemic has had a major impact upon every country,
every industry and every profession. Labor shortages, freight
disruption, work-from-home orders and chip shortages have
challenged engineering projects everywhere. The challenge
presented by COVID-19 has been compounded by political
tensions and increased extreme weather events. One of the
worst areas impacted has been the production of
semiconductors. This shortage has often been framed within
the context of the automotive industry, although its
ramifications extend across the whole embedded systems
industry, which touches all industry sectors.

Experts estimate that the global semiconductor shortage
will extend until at least the end of this year. Fig. 1. Shows
predictions for the Gartner Index of Inventory Semiconductor
Supply Chain Tracking, with values <1.0 indicating a
shortage. Based on these trends, Gartner predicts a return to
normal inventory levels will not happen until Q3 or Q4 of
2022 [1]. Other industry leaders expect shortages to continue
impacting supply chains well into 2023 [2].

Given the ongoing demand for chip-based solutions across
all sectors, waiting is not an option for most companies.
Engineering is about finding viable solutions when challenges
present themselves. In this paper we discuss the use of
software abstraction techniques to avoid platform-specific
limitations and enable the reuse of existing software across
platforms. We’ll explore the value of this approach as a way
to avoid the issues related to hardware shortages. We ground
our explanation using examples from real projects.

II. CHALLENGES ARISING FROM COMPONENT

SHORTAGES

Geopolitical tensions had been causing concern about
continuity of supply chains even prior to the pandemic.

Fig. 1. Predicted duration of semiconductor shortage

mailto:firstname@clarinox.com

However, it was during the periods of lockdowns and stay-at-
home orders put in place to deal with the threat from COVID-
19 that chip manufacturing was halted, leading to a reduction
in supply. Simultaneously, the lockdowns fueled rising
demand. This supply chain disruption has forced companies
that rely on a supply of semiconductors to switch from one
part to another, or one supplier to another, in an attempt to
fulfill their customers’ orders.

In the embedded systems industry, the flow-on effect of
these shortages is an enormous amount of rework for
engineering teams. This has not only required hardware
redesign but has also necessitated embedded software
changes. The effects are many and include:

• Extra cost for redesign, redevelopment, and
recertification to comply with industry standards

• Production delays and stoppages across many industry
segments due to inability to obtain required
component/s

• Possibility of plant shutdowns in cases of prolonged
production stoppages

• Reduced development efficiency due to not having
access to required tools from home

• Slower development times due to difficulties sharing
the development experience and debugging
information while working remotely

A mixture of responses occurred to the shortages.
Semiconductor vendors made moves to increase production to
help mitigate the situation. Stockpiling occurred, either at state
or company level, and limits were imposed upon exports to
better respond to market volatility and political pressures [3].
These long-term measures, however, were not sufficient for a
company that needs to fill customer orders in the short term.
Companies have needed to come to terms with the need to
change out the hardware and software components upon
which their products were based. The considerable amount of
work required to implement such component changes can be
reduced by building in software flexibility through
frameworks and abstraction from the specifics of the target
platform.

III. BENEFITS OF ABSTRACTION BASED CONNECTIVITY

Implementing abstraction based solutions is an efficient
way of meeting the challenges of component shortages.
Abstracting all or parts of the system software, such as the
connectivity components from the hardware and Real Time
Operating System (RTOS) layer, allows current software to be
reused in the event of a component shortage, and relieves part
of the rework burden.

Reuse in software is an area much talked about but well
under achieved, and using abstraction is an effective way to
ensure that software can be reused when adapting to new
situations. Whether due to supply chain disruptions, or simply
demand for another member of a product family, the same
software libraries and application layers can run across dozens
of different target platforms without the need for a full porting
effort. This in combination with a reduced recertification

workload allows project timelines to be kept to a minimum,
enabling companies to move forward with their designs in a
timely and cost-effective way, despite unforeseen
circumstances.

IV. ABSTRACTION BASED CONNECTIVITY IN DETAIL

Many factors must be considered when implementing an
abstraction based approach. These include abstraction of
processor architecture, microcontroller/microprocessor unit
(MCU/MPU), OS/RTOS, Bluetooth or Wi-Fi chipset,
hardware interface, TCP/IP network stack, permanent storage
and debugging software.

To illustrate how an abstraction based connectivity
solution may be implemented, we use the example of
ClarinoxSoftFrame, developed by Clarinox. This software is
designed to allow various levels of abstraction, providing
sufficient internal functions to enable deterministic behaviour
across a wide range of possible components. A block diagram
is provided in Fig. 2, showing the connectivity software and
the connection to other elements of the software architecture.

A. Semiconductor Abstraction

When dealing with semiconductor shortages, it is
important to consider incorporating flexibility in processor
architecture and MCU/MPU. This flexibility allows engineers
to reuse portions of existing software, making the change from
one supported semiconductor to another a significantly
reduced effort as compared to a traditional porting. By using
a modular approach, new chipsets can be supported by the
abstraction layer quickly and efficiently while keeping
sufficient functionality within the framework. The bulk of the
engineering time can then be spent on testing and performance
tuning.

Supported processor architectures and MCU/MPUs for the
example of ClarinoxSoftFrame are shown in Tables I and II.

TABLE I. PROCESSOR ARCHITECTURES SUPPORTED BY

CLARINOXSOFTFRAME

CPU Architectures Variant

ARM 7/9/11, Cortex-M, Cortex-R, Cortex-A

(32Bit/64 Bit)

Analog Devices Blackfin ADSP-x

Intel x86 All x86

Infineon Aurix TC2xx/TC3xx

MIPS FPGA based

PowerPC FPGA based

Renesas RH850 RH850

RISC-V FPGA based

SPARC-LEON FPGA based

www.embedded-world.eu

TABLE II. MCU/MPUS SUPPORTED BY CLARINOXSOFTFRAME

Semiconductor

Vendor

Chips

Atmel/Microchip SAM 4Sxx

Analog Devices Blackfin ADxxx

Dialog

Semiconductor

DA14195/DA14196

Infineon XMC 4700/AurixTC2xx/TC3xx

 Intel Pentium, Atom, Quark

NXP LPC18xx/43xx/54xxx; i.MX6, i.MX8,
i.MX28, i.MX31; i.MX RT 1xxx, Kinetis K6x

/ K7x

Renesas Synergy S5/S7, SHx, R-Car M3/H3, RH850,
RA, RE

ST Microelectronics STM32F4xx, STM32WB55, STM32MP157,

STM32H7xx, STM32F7xx, STM32L5xx,

STM32U5xx

TI DSP 5xxx, OMAP, Sitara 3xxx, Tiva
TM4C12x, MSP432

B. Operating System Abstraction

Component shortages may also necessitate a change in the
OS/RTOS. Again, abstraction of this layer significantly
increases productivity by removing the need to perform
porting when changing OS/RTOS. This OS/RTOS abstraction

can be achieved through a combination of several
mechanisms.

Many operating systems differ in their scheduling
algorithms and the features that they provide. To avoid
behaviour differences due to underlying OS/RTOS changes,
an abstraction based architecture needs to enable a smooth
transition from one OS to other. This can be done by
controlling the scheduling instead of relying on the underlying
RTOS. The behaviour of the application therefore will not be
affected by use of a different RTOS or other parameters such
as processor speed.

Another source of behaviour differences may be too many
RTOS thread switching events. High-speed connectivity
applications will be especially affected by such a design. To
avoid too many thread switching events during a connectivity
stack receiving packets from the physical interface, passing
them to various protocol levels and then eventually to the user
application, a cooperative multitasking architecture will help
the processor to allocate resources to this connectivity stack in
an uninterrupted manner.

The RTOS can be used to separate user application from
the connectivity stack and physical interface drivers.
Connectivity data packets will be passed from application to
connectivity stack, and then to physical layer or vice versa. If
the connectivity stack has multiple layers, cooperative tasking
avoids excessive thread switches which would reduce
performance.

Fig. 2. Architecture of connectivity solution within abstraction based architecture

Table III shows the current OS/RTOS options that are
supported by the ClarinoxSoftFrame architecture. Changing
from one RTOS to another can be performed without the need
to change the wireless protocol stack, wireless application, or
functionality of the end product.

C. Wireless Chipset Abstraction

In wireless systems, the wireless chipset is also a major
factor. Similar to semiconductor and operating system
abstraction, abstraction at this level can facilitate faster
changeover should changes need to be made to the wireless
chipset. To achieve such abstraction, an intermediate board
support package layer needs to be used. Such a layer can be
implemented by using a well-defined lightweight interface
architecture.

Table IV lists ClarinoxSoftFrame’s currently supported
wireless chipsets, exemplifying the wide range of Bluetooth
and Wi-Fi chipsets that may be substituted should such
requirements arise.

D. Hardware Interface Abstraction

 Various hardware interfaces can be used to interface to
the connectivity devices. Wi-Fi generally uses SDIO, PCIE,
USB or SPI interfaces, while Bluetooth more commonly uses
UART or USB (but SDIO or SPI are used by some designs).
ClarinoxSoftFrame accounts for all these possible interfaces,
as shown in Fig. 2. Abstraction at this level provides flexibility
should the hardware need to change in projects impacted by
chipset shortages.

E. TCP/IP Network Stack Abstraction

The TCP/IP network stack is an important consideration
for today’s connected embedded devices and there are many
open source and commercial choices. In some cases, the
TCP/IP stack is provided as part of the RTOS, as in the
example of Microsoft providing NetX/NetX-Duo with
AzureRTOS (formerly ThreadX RTOS).

Table V shows the TCP/IP stacks supported by
ClarinoxSoftFrame architecture. Creating an abstraction for
this layer facilitates a simpler process when change is required
and therefore assists to prolong product life cycle.

TABLE III. OS/RTOS SUPPORTED BY CLARINOXSOFTFRAME

OS RTOS

Android AutoSAR

Automotive Grade Linux (AGL) CMSIS & RTX

Linux (Ubuntu etc.) embOS /MQX

Mentor Graphics Linux FreeRTOS

 SYSGO Embedded Linux
ELinOS

Nucleus INTEGRITY

Wind River Linux QNX

Windows 8.1/10/11 ThreadX / Microsoft Azure RTOS

Yocto Linux TI-RTOS / eCos

 uCos-II/III

 Wind River VxWorks

 Windows CE/Mobile

TABLE IV. WIRELESS CHIPSETS SUPPORTED BY

CLARINOXSOFTFRAME

F. Permanent Storage Abstraction

Another abstraction that is essential is that of the
permanent storage. Whether a file system or Flash/EEPROM
memory interface is used, an abstraction mechanism avoids
application rewrites when a change is necessitated. A
connectivity stack may require storage of pairing and bonding
information or configuration data. This level of abstraction
needs the connectivity stack to utilize generic memory access
functions. In the user wireless application, these memory
access functions are translated into one of the above-
mentioned permanent storage methods.

G. Debugger Abstraction

Once the framework elements are in place, abstracting the
debugging mechanism can provide a final layer of flexibility.

Due to connected applications not lending themselves well
to static debugging (i.e. stop and step though), relying on the
Integrated Development Environment (IDE) to debug such
complex products frequently results in overlooked issues and
schedule slippage. The ClarinoxSoftFrame abstraction layer
includes a debugger, ClariFi, which gives a clear real-time
view into the connectivity layer, including protocol specifics,
memory state, application fatal errors, warnings and test
messages. It also allows for comprehensive postmortem
analysis via detailed log files, as well as complex filtering,
performance analysis, and automated testing, all of which help
to keep development on schedule.

One main aspect of debug abstraction is hardware
interface abstraction. By providing a consistent interface for
automated testing, workload is reduced when changes are
required. For example, ClariFi allows Ethernet, UART or
JTAG to be used for connecting the target platform for
debugging, and abstracts debug messaging from OS/RTOS,
MPU/MCU and hardware interfaces. Such flexibility can be a
huge benefit in certification testing, allowing for efficient
recertification, and a reduction in the overall product
development cycle compared to IDE debugging alone, even
in the case of a chipset change.

Bluetooth Chipset Wi-Fi Chipset

Ceva NXP 88W88xx, 88W89xx,

88Q9098
Cypress Realtek RTL8723, RTL8821,

RTL8822

Dialog Semi Texas Instruments WL6, WL7,
WL8

Marvell
MediaTek
Nordic nRF52840, nRF52832
Qualcomm / CSR
Realtek
ST Micro STM32WB55
Synopsis
Texas Instruments
Any HCI Interface SoC

• Cypress
• Dialog

Semi
• Marvell
• MediaTek
• Nordic

88W88xx,
88W89xx,
88Q9098

• Realtek
RTL8723,
RTL8821,
RTL8822

• Texas
Instrument
s WL6,
WL7, WL8

• Cypress
• Dialog

Semi
• Marvell
• MediaTek
• Nordic

nRF52840,
nRF52832

• Qualcomm
/ CSR

• Realtek
• ST Micro

STM32WB
55

• Synopsis
• Texas

Instruments
• Any HCI

SoC

www.embedded-world.eu

TABLE V. TCP/IP NETWORK STACKS SUPPORTED BY

CLARINOXSOFTFRAME

TCP/IP Stack

Android

AutoSAR TCP/IP

HCC TCP/IP

Linux TCP/IP

LWIP

NDK TCP/IP

NetX/Netx-Duo

NORTi uITRON TCP/IP

QNX

MQX RTCS

Segger emNet

VxWorks

Microsoft Windows 8.1/10/11

V. CASE STUDIES IN ABSTRACTION BASED

CONNECTIVITY

Abstraction based solutions have been applied to assist
customers in the current crisis from a variety of industries
including home automation, radio communications and office
equipment sectors. Here we look at several cases that have
benefitted from abstraction based approaches.

A long-standing vendor within the radio communications
space was disrupted by the components shortages and
struggled to obtain sufficient components to meet customer
orders. A decision was made in early 2021 to move all
products to a target agnostic approach to provide certainty that
platform changes could be handled with minimum impact
when needed. This move was made by the end of 2021,
protecting these products from future uncertainty.

In mid-2021 a major player in the office equipment sector
was also affected by the semiconductor shortages. The choice
was either to not meet product demand or change both MPU
and wireless chipset to enable sufficient production. The
inability to get sufficient chipset supply to fulfill customer
orders forced the need to change chipset vendors. All
embedded software needed to be rewritten which introduced
a time lag, but the use of the abstraction based approach
minimized the effort. Going forward with the abstraction
based approach will prevent this situation recurring.

Even without the current component shortages, the
abstraction based software approach is beneficial to enable the
maintenance of a single application layer across product
family members. In 2015, a Fortune 100 corporation in the
home automation industry realized that the maintenance load
of different software across the different targets used for the
one product family was causing inefficiencies. A decision was
made to consolidate the connectivity component of all family
members to abstraction based solutions. This relieved the
maintenance workload and enabled the company to move
forward with their designs with the knowledge that the
software could be reused into the future as hardware was

upgraded. Additionally, such an architecture gives a longer
life cycle to any product by allowing MCU/MPU, wireless
hardware and RTOS changes.

The presentation of this paper will include a discussion of
specific customer examples.

VI. CONCLUSION

Abstraction based approaches to software design are
particularly relevant in the context of component shortages,
which have had a widespread impact on embedded software
development over the past two years. This approach aligns
with the golden rule of software engineering – reuse.
Abstraction provides the ability to reuse current software
when needing to switch components, minimizing the redesign
workload and keeping projects on schedule.

Multiple layers of hardware and software based
abstraction are advisable, including abstraction of the
MCU/MPU, Bluetooth or Wi-Fi chipset, OS/RTOS, TCP/IP
network stack, permanent storage and debugging software.
ClarinoxSoftFrame is an example of a software package that
facilitates implementation of abstraction at these various
levels.

Despite the challenges presented by component shortages,
there are many examples of projects that have successfully
adapted to this situation using abstraction based models.
Engineers should be aware of these options at the beginning
of the development process to avoid the inconvenience of
reworking entire projects when forced to switch platforms due
to supply disruptions.

REFERENCES

[1] K.C. Quah, ‘What is ahead for semiconductor shortages,’ Gartner.
[Online]. Available: https://www.gartner.com.au/en/articles/what-is-
ahead-for-semiconductor-shortages

[2] ‘The chip shortage: current challenges, predictions, and potential
solutions,’ FS Community. [Online]. Available:
https://community.fs.com/blog/the-chip-shortage-current-challenges-
predictions-and-potential-solutions.html

[3] Bloomberg, ‘China stockpiles chips, chip-making machines to resist
U.S.,’ Yahoo. [Online] Available:
https://au.finance.yahoo.com/news/china-stockpiles-chips-chip-
making-210000407.html

https://www.gartner.com.au/en/articles/what-is-ahead-for-semiconductor-shortages
https://www.gartner.com.au/en/articles/what-is-ahead-for-semiconductor-shortages
https://community.fs.com/blog/the-chip-shortage-current-challenges-predictions-and-potential-solutions.html
https://community.fs.com/blog/the-chip-shortage-current-challenges-predictions-and-potential-solutions.html
https://au.finance.yahoo.com/news/china-stockpiles-chips-chip-making-210000407.html
https://au.finance.yahoo.com/news/china-stockpiles-chips-chip-making-210000407.html

