
Prototype debugging
… an investigation of hardware / software issues

The process of rapid prototyping is often performed by the integration of several
main system components from various vendors. Components include software
and hardware items such as off-the-shelf 32 bit processor board, Real Time
Operating System, Board Support Package, and protocol stack/s. It is not
uncommon that at the end of a lengthy period of integration and application
development, that the testing phase reveals that the overall function has not
been achieved. Tracing the source is difficult as each individual component vendor
can claim correct function out-of-box. Six weeks later, the basic overall software
and hardware functions still can not be achieved. Software vendors claim that it is
not a software fault, hardware vendors claim it is not a hardware fault and none
of the standard tests or tools have proved conclusively one way or another. This
is a classic debugging scenario nightmare.

Wikipedia defines debugging with the phrases “Debugging is a methodical process
of finding and reducing the number of bugs, or defects, in a computer program or
a piece of electronic hardware thus making it behave as expected. Debugging
tends to be harder when various subsystems are tightly coupled, as changes in
one may cause bugs to emerge in another.”

It appears that computing has taken the word from an older usage as whilst “The
terms "bug" and "debugging" are both popularly attributed to Admiral Grace
Hopper in the 1940s[1]. While she was working on a Mark II Computer at
Harvard University, her associates discovered a moth stuck in a relay and thereby
impeding operation, whereupon she remarked that they were "debugging" the
system. However the term "bug" in the meaning of technical error dates back at
least to 1878 …, and "debugging" seems to have been used as a term in
aeronautics before entering the world of computers.”

Wikepedia goes on to say that “Debugging is, in general, a lengthy and tiresome
task. The debugging skill of the programmer is probably the biggest factor in the
ability to debug a problem, but the difficulty of software debugging varies greatly
with the programming language used and the available tools, such as debuggers.”

This view has been support as early as 1997 when researchers Vranken, H.P.E.
Stevens, M.P.J. Segers, M.T.M. Dept. of Electronics Eng., Eindhoven University
of Technology stated that “…the debugging of hardware/software systems is still a
very troublesome process. This is mainly due to the limited accessibility to the
internals of embedded hardware/software systems.”

If this is a long held and recognised view of debugging does this relegate the task
to those few creative individuals who love the challenge – or is there hope for
more ordinary mortals?

Let us return to our debugging nightmare. You are faced with a system that
clearly does not work as desired. Many engineers have a natural belief in their
own work and natural disbelief in the work of others, however a good engineer
believes only in facts and isolates the issue by using facts.

Part of the function required is to interface to an external hardware device. The
application software is using the device driver provided by the RTOS vendor. The
issue seen is that, on rare occasions, the correct data is not received by the
application. There are several elements to this,

1. The transmit side of the application
2. The RTOS provided device driver on transmit side
3. The external hardware
4. The device driver on receive side
5. The receive side of the application

To determine which element has the issue, rewrite code to isolate to a particular
code segment. Just include the code concerned with send and receive data and
eliminate other sections irrelevant to the issue. This assumes of course that the
issue is not a timing issue or a corruption caused within the seemingly irrelevant
code portions. Below picture depicts this hypothetical scenario.

Peripheral
IODevice Driver

RTOS

Application SW

CPU - Flash - SDRAM

External
Device

Logic Analyzer /
Protocol Analyzer

To make sure that the application is sending and receiving the correct data, print
all data sent to device driver and print all data received from the device driver.
Printing depends on the available debugging ports on the hardware. It could be a
spare serial port, on device Flash file system or as simple as a hardware port or
LED that could be monitored by a Logic Analyzer or a storage oscilloscope. If the
printing proves that the data is as per design, then the application transmit side is
proven to work correctly.

If the data sent by the application prints correctly but the received data is not
correct then it appears that we need to look deeper for a device driver or
hardware issue. Assume this to be the finding in this example. After this it is time
to use a protocol or logic analyzer to analyze bytes coming out of the processor
board. If the data monitored at the hardware port of the board matches the data
printed by the application, then we are satisfied with the items 1 and 2 of the
suspect list. However, if the application sends the correct data, proven by printing,
but the device driver does not generate the same data coming from application
on the hardware port then the error can be assumed to be in the device driver/
Board Support Package.

If the hardware sends the data presented to it from the device driver and the
external device generates data back to the board then the error can be assumed
to be in the external hardware device. But, wait, life may not be that simple, we
may see the expected sequence of data received at the input port of the
hardware. This clears the doubts about the external device being faulty. We then

look at the possibility of the device driver receive side/Board Support Package
receive issues versus the most likely problem of us using the device driver
incorrectly. How do we decide whether we do the right thing and the device driver
is occasionally missing bytes or our receiving thread does not have high enough
priority and while processing the previous packet we are causing an overrun of
the hardware receive buffer. Now, this is a good time to add error checking after
each API call and reading the hardware status register to be able to detect the
unexpected. Most of the times we will find the issue in our interpretation of the
device driver APIs and the mechanism. But, do not spend weeks on this issue,
email the vendor or online communities to find someone else who has been down
the same path.

Finally, the most likely culprit has been found and the decision is in fact that there
is an error within the RTOS supplied device driver. This needs to be forwarded to
the real-time operating system vendor to obtain a fix (assuming not open source).
Presenting all the facts gained during testing is the key factor to get this required
technical support in a timely manner. Calming down to restate every step taken
and every result observed is time consuming and will take some effort. Writing
even what seem obvious or trivial steps such as “power on the unit, wait until the
green LED is on, etc” will enable the correct flow to be tracked through the third
party code. In our example the RTOS vendor needs to know which elements of
the device driver code have failed (given the problem is intermittent it must be a
portion of code only entered upon the meeting of specific, infrequently met,
criteria) to be able to rectify the issue.

In our experience adoption of this methodical and scientific approach will pay
back. Of course it is also important to design to avoid bugs in the first place, but
that topic we will tackle at another time.

About Clarinox Technologies

Clarinox Technologies specializes in embedded systems and short range wireless
technologies, products include ClarinoxSoftFrame, ClarinoxBlue, ClarinoxScan,
ClarinoxGPRS. Together these products provide the building blocks for
constructing an embedded short range wireless product.

